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Abstract. We present a theory for algebraic multigrid (AMG) methods that allows for general
smoothing processes and general coarsening approaches. The goal of the theory is to provide guidance
in the development of new, more robust, AMG algorithms. In particular, we introduce several
compatible relaxation methods and give theoretical justification for their use as tools for measuring
the quality of coarse grids.
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1. Introduction. The algebraic multigrid (AMG) method was originally devel-
oped to solve general matrix equations using multigrid principles [7, 3, 8, 19, 4, 20].
The fact that it used only information in the underlying matrix made it attractive as
a potential black box solver, a notion that has since been all but abandoned. Instead,
a wide variety of AMG algorithms have been developed that target different problem
classes and have different robustness and efficiency properties.

In recent years, much work has been done to increase the robustness of algebraic
multigrid methods. The classical AMG method of Ruge and Stüben [20] was built
upon heuristics based on properties of M-matrices. Although this algorithm works
remarkably well for a wide variety of problems [12], the M-matrix assumption still
limits its applicability. To address this, a new class of algorithms was developed
based on multigrid theory: AMGe [9, 16], element-free AMGe [14], and spectral
AMGe [11]. All of these algorithms (including Ruge-Stüben AMG) assume a basic
framework in their construction: they assume that relaxation is a simple pointwise
method, then they build the coarse-grid correction step to eliminate the so-called
algebraically smooth error left over by the relaxation process. In the AMGe methods,
this is done with the help of a measure and an associated approximation property
that, if satisfied, implies uniform multigrid convergence. The approximation property
induces a new heuristic that relates the accuracy of interpolation to the spectrum of
the system matrix: namely, that eigenmodes with small associated eigenvalue must
be interpolated well.

In this paper, we present a theory that generalizes the AMG framework to ad-
dress even broader classes of problems. For example, the eddy current formulation
of Maxwell’s Equations (when discretized using the common Nédélec finite elements)
has a particularly large (near) null-space. In the previous framework, it would be
necessary to take all O(N) of the null-space components to the coarse grid, yield-
ing a non-optimal method. This difficulty can be overcome by using non-pointwise
smoothers that damp some of the null-space components on the fine grid. Examples
include overlapping block relaxation [1] and a form of Brandt’s distributive relaxation
[6, 21] described by Hiptmair in [15].

The theory presented here allows for more general smoothing processes, and
changes the above AMGe heuristic in a subtle but important way. It also allows for
general coarsening approaches, including vertex-based, cell-based, and agglomeration-
based. Yet another aspect of the new theory and framework is compatible relaxation,
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an idea originally proposed by Brandt [5]. We introduce several variants of compatible
relaxation and give theoretical justification for its use. The hope is that this work will
provide guidance in the development of new AMG methods able to handle difficult
problems such as Maxwell’s equations.

We assume that the reader is somewhat familiar with AMG research, as numerous
comparisons will be made to AMGe and other methods such as smoothed aggregation
[22]. In Section 2, we introduce two new measures and provide two-level convergence
theory. In Section 3, we analyze the min-max problem for the new measures. In Sec-
tion 4, we discuss the process of building interpolation, and provide additional theory
to support this approach. In Section 5, we show how to use compatible relaxation to
evaluate the measure and select coarse grids. In Section 6, we present two examples
illustrating the application of the theory to real problems.

2. New Measures and Convergence Theory. We begin with some notation.
Capital italic Roman letters (A,M,P,R) denote matrices and bold lowercase Roman
and Greek letters denote vectors (u,v, ε). Other lowercase letters denote scalars,
while capital calligraphic letters denote sets and spaces (C,F ,S). We represent the

standard Euclidean inner product by 〈·, ·〉 with associated norm, ‖·‖ := 〈·, ·〉1/2. The
A-norm (also called the energy norm) is defined by ‖·‖A := 〈A ·, ·〉1/2.

Consider solving via algebraic multigrid the linear system

Au = f , (2.1)

where A is a real symmetric positive definite (SPD) matrix, with u, f ∈ Rn. We
consider smoothers (relaxation methods) of the form,

uk+1 = uk +M−1rk, (2.2)

where rk = f − Auk is the residual at the kth iteration. The error propagation for
this iteration is given by

ek+1 = (I −M−1A)ek. (2.3)

We also assume that (M +MT −A) is SPD. It is easy to see that this is a necessary
and sufficient condition for convergence (e.g., see the first line in the proof of Theorem
2.2), and hence a reasonable assumption.

Let P : Rnc → Rn be the interpolation (or prolongation) operator, where Rnc is a
lower-dimensional (coarse) vector space, and define Q : Rn → Rn to be a projection
onto range(P ):

Q = PR, (2.4)

for some restriction operator R : Rn → Rnc such that RP = Ic, the identity on Rnc .
Note that R is not the multigrid restriction operator (we will use P T and the Galerkin
procedure). Also note that the form of R will be important in the remaining sections
of the paper.

Define the following measure (we will introduce a second, simpler measure later),

µ(Q, e) :=

〈

M(M +MT −A)−1MT (I −Q)e, (I −Q)e
〉

〈Ae, e〉 . (2.5)

This measure differs from the AMGe measure in [9] by the inclusion of the term
M(M+MT −A)−1MT in the numerator. The additional term takes into account the
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general relaxation process in (2.2). It also provides a natural scaling that eliminates
the need to pre-scale A to have diagonal equal one, as in the theory for AMGe.

We now prove that if the measure in (2.5) is bounded by a constant, then two-
level multigrid converges uniformly. Furthermore, a smaller measure yields faster
convergence. Denote the A-orthogonal projector onto range(P ) by

QA := P (PTAP )−1PTA, (2.6)

so that I −QA represents the error propagation matrix for the coarse-grid correction
step. We first prove the following lemma.

Lemma 2.1. Let Q be any projection onto range(P ). Assume that the following
approximation property is satisfied for some constant K:

µ(Q, e) ≤ K ∀e ∈ Rn \ {0}. (2.7)

If e 6= 0 is A-orthogonal to range(P ), then
∥

∥

∥
(M +MT −A)1/2M−1Ae

∥

∥

∥

2

≥ 1

K
〈Ae, e〉 . (2.8)

Proof. Note that range(Q) = range(P ), hence, if e is A-orthogonal to range(P ),
then

〈Ae, Qv〉 = 0 ∀v ∈ Rn. (2.9)

Assume that (2.7) holds. From (2.9) and the Cauchy-Schwartz inequality, we have

〈Ae, e〉 = 〈Ae, (I −Q)e〉
=
〈

(M +MT −A)1/2M−1Ae, (M +MT −A)−1/2MT (I −Q)e
〉

≤
∥

∥

∥
(M +MT −A)1/2M−1Ae

∥

∥

∥

∥

∥

∥
(M +MT −A)−1/2MT (I −Q)e

∥

∥

∥

≤
∥

∥

∥
(M +MT −A)1/2M−1Ae

∥

∥

∥
K1/2 〈Ae, e〉1/2 .

The result (2.8) now follows by dividing through by 〈Ae, e〉K1/2 and squaring the
result.

Theorem 2.2. Assume that approximation property (2.7) is satisfied for some
constant K. Then K ≥ 1 and

∥

∥(I −M−1A)(I −QA)e
∥

∥

A
≤
(

1− 1

K

)1/2

‖e‖A . (2.10)

Proof. We have the following identity
∥

∥(I −M−1A)e
∥

∥

2

A
= 〈Ae, e〉 −

〈

Ae, M−1Ae
〉

−
〈

M−1Ae, Ae
〉

+
〈

AM−1Ae, M−1Ae
〉

= 〈Ae, e〉 −
〈

(M +MT −A)(M−1A)e, (M−1A)e
〉

.

Replacing e with (I −QA)e and applying the result in Lemma 2.1 yields

∥

∥(I −M−1A)(I −QA)e
∥

∥

2

A
≤
(

1− 1

K

)

‖(I −QA)e‖2A

≤
(

1− 1

K

)

‖e‖2A .
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To show that K ≥ 1, note that the identity at the beginning of the proof implies
(since norms are non-negative)

∥

∥

∥
(M +MT −A)1/2M−1Ae

∥

∥

∥

2

≤ 〈Ae, e〉 .

The result follows by restricting e 6= 0 to be A-orthogonal to range(P ) and applying
Lemma 2.1.

The result in Theorem 2.2 is similar to the AMGe result in [9], but applies to
more general relaxation methods (than Richardson relaxation). As in AMGe, the
bound on the convergence factor approaches 1 as K becomes large, while a smaller K
yields a smaller bound on the convergence factor. Note, however, that neither the new
measure µ nor the corresponding convergence result reduces to the AMGe measure or
convergence result in the case of Richardson relaxation. To complete the connection
between the two theories, we now introduce a second, simpler measure:

µσ(Q, e) :=
〈σ(M)(I −Q)e, (I −Q)e〉

〈Ae, e〉 , (2.11)

where σ(M) := 1
2
(M +MT ) is the symmetric part of M . Note that the term σ(M)

can be replaced equivalently by M , but the symmetric form of this measure is more
natural in the theory that follows. The relationship between the measures µ and µσ

is given in the next lemma.

Lemma 2.3. Assume that (M +MT −A) is SPD. Then,

µ(Q, e) ≤ ∆2

2− ω
µσ(Q, e), (2.12)

where ∆ ≥ 1 measures the deviation of M from its symmetric part in the sense that

〈Mv, w〉 ≤ ∆ 〈σ(M)v, v〉1/2 〈σ(M)w, w〉1/2 , (2.13)

and where

0 < ω := λmax(σ(M)−1A) < 2. (2.14)

Proof. Note that since (M +MT −A) is SPD, then both σ(M) and σ(M−1) are
also SPD. From (2.13), letting v =M−1x and w = σ(M)−1x, we have that

〈

σ(M)−1x, x
〉2 ≤ ∆2

〈

σ(M)M−1x, M−1x
〉 〈

σ(M)−1x, x
〉

.

Dividing both sides by
〈

σ(M)−1x, x
〉

yields

〈

σ(M)−1x, x
〉

≤ ∆2
〈

MM−1x, M−1x
〉

= ∆2
〈

M−1x, x
〉

= ∆2
〈

σ(M−1)x, x
〉

.
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From this and (2.14), we then have

µ(Q, e) =

〈

M(M +MT −A)−1MT (I −Q)e, (I −Q)e
〉

〈Ae, e〉

≤ max
x

〈

M(M +MT −A)−1MTx, x
〉

〈σ(M)x, x〉 µσ(Q, e)

≤
(

min
x

〈

(M(M +MT −A)−1MT )−1x, x
〉

〈σ(M−1)x, x〉

)−1

∆2 µσ(Q, e)

=
∆2

λmin(σ(M−1)−1(2σ(M−1)−M−TAM−1))
µσ(Q, e)

=
∆2

2− ω
µσ(Q, e).

Lemma 2.3 provides an obvious corollary to Theorem 2.2 for measure µσ. This
corollary is the analogue to the AMGe two-level convergence theory in [9]. To see
this, note that for a weighted Richardson iteration with weight ωr, we have that
M−1 = ωr ‖A‖−1 I. If we assume that the AMGe measure is bounded by some
constant Kr, then the lemma implies that ∆ = 1, ω = ωr, and hence,

µ(Q, e) ≤ ω−1r (2− ωr)
−1 ‖A‖ Kr.

Applying Theorem 2.2 then yields the AMGe convergence result.

In order for µσ to be a useful measure in practice, we need the constants ω
and ∆ to be “good” constants. In particular, we want both constants to be mesh
independent, and we want ω to be bounded away from two. Bounding ω away from two
is always possible by using appropriate weighting factors in the relaxation method. In
the classical setting, this requirement is equivalent to satisfying a smoothing property;
in general, it means that the smoother must damp large eigenmodes of A. Note that
this does not preclude the smoother from also damping small eigenmodes (e.g., as
required for Maxwell’s equations).

To further elaborate on the constants ω and ∆, consider the discrete Laplacian
on a uniform grid. First, define m := λmax(D

−1A), where D is the diagonal of A.
For weighted Jacobi relaxation with weighting factor 2/3, we have that ω = (2/3)m.
Since m ≤ 2 for the Laplacian, then ω ≤ 4/3. For Gauss-Seidel relaxation, let
A = D+L+LT , where L is the strictly lower-triangular part of A. Then, M = D+L
implies that σ(M) = 1

2
(D +A), and hence,

ω = λmax
[

2(D +A)−1A
]

=
2

1 +m−1
. (2.15)

For the Laplacian, this again implies that ω ≤ 4/3. We can also use (2.15) to estimate
ω in more general settings. For example, in the case of finite elements, one can
show that m is not larger than the maximum number of element degrees of freedom.
Likewise for any sparse matrix A, one can show thatm is not larger than the maximum
number of nonzeros per row (column) of A.

The constant ∆ is equal to 1 when M is symmetric. As an example of a nonsym-
metric M , again, consider Gauss-Seidel. With m equal to the maximum number of
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nonzeros in a row (column) of A, and letting v = (vi), w = (wi), and A = (aij), we
have,

〈Mv, w〉 ≤
∑

j≤i:aij 6=0
|aij ||vj ||wi|

≤
∑

j≤i:aij 6=0

√
ajj
√
aii|vj ||wi|

≤





∑

j≤i:aij 6=0
ajj(vj)

2





1/2 



∑

j≤i:aij 6=0
aii(wi)

2





1/2

≤ 1/2 (m+ 1) 〈Dv, v〉1/2 〈Dw, w〉1/2

≤ 1/2 (m+ 1) 〈(D +A)v, v〉1/2 〈(D +A)w, w〉1/2

= (m+ 1) 〈σ(M)v, v〉1/2 〈σ(M)w, w〉1/2 .

3. The Min-Max Problem. In this section, we analyze the optimal min-max
solution of the measures (2.5) and (2.11), and use the results as a discussion point for
relating and comparing the new theory to existing methods such as AMGe, spectral
AMGe, and smoothed aggregation [22]. We also introduce generalized notions of the
C-pt (coarse points) and F -pt (fine points) terminology used in the classical Ruge-
Stüben AMG algorithm. The material in this section serves as a launching pad for
the ideas and results in the remainder of the paper.

To analyze the min-max solution of (2.5) and (2.11), we analyze the following
base measure:

µ
X
(Q, e) :=

〈X(I −Q)e, (I −Q)e〉
〈Ae, e〉 , (3.1)

where, here again, Q has the formQ = PR for some restriction operator R : Rn → Rnc

such that RP = Ic, and where X represents any given SPD matrix. In the remainder
of the paper, it will be important that we fix R so that it does not depend on P (as
in spectral AMGe). This operator defines the coarse-grid variables [5], uc = Ru, and
specifies, for example, whether they are a subset of the fine-grid variables (vertex-
centered), averages of fine-grid variables (cell-centered), or coefficients of fine-grid
basis functions (agglomeration, e.g., as in spectral AMGe or smoothed aggregation).
The coarse-grid variables, Ru, are analogous to C-pts in Ruge-Stüben AMG.

Now, define S : Rns → Rn, where ns = n − nc, such that RS = 0. Think
of range(S) as the “smoother space”, i.e., the space on which the smoother must
be effective. Note that S is not unique (but range(S) is). The variables, STu, are
analogous to F -pts. Note also that S and RT define an orthogonal decomposition of
Rn. That is, any vector e can be written as e = Ses +RT ec, for some es and ec. We
will see in Theorem 3.1 below that the min-max problem of this section also induces
an A-orthogonal decomposition of Rn involving the operator S.

Theorem 3.1. Assume we are given a coarse grid Ωc, and define

µ?
X
:= min

P
max
e6=0

µ
X
(PR, e). (3.2)

The argmin of (3.2), P?, satisfies

PT
? AS = 0. (3.3)
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The minimum is given by

µ?
X
=

1

λmin((STXS)−1(STAS))
. (3.4)

Proof. Note that since Q = PR, RP = Ic, and RS = 0, we have

(I −Q)P = 0; (I −Q)S = S. (3.5)

Also note that e−PRe = (I−Q)e ∈ range(S) sinceR(I−Q) = 0. Hence e = Ses+Pec
for some es and ec = Re. From (3.2), using (3.5), we then have that

µ?
X
= min

P
max
ec,es

〈XSes, Ses〉
〈ASes, Ses〉+ 2 〈ASes, Pec〉+ 〈APec, Pec〉

(3.6)

= min
P

max
es

〈XSes, Ses〉
minec

(〈STASes, es〉+ 2 〈P TASes, ec〉+ 〈PTAPec, ec〉)
. (3.7)

The denominator in (3.7) is a quadratic form in the variable ec with solution

ec = −(PTAP )−1PTASes. (3.8)

Plugging (3.8) back into (3.7) gives

µ?
X
= min

P
max
es 6=0

〈XSes, Ses〉
〈STASes, es〉 − 〈(P TAP )−1PTASes, PTASes〉

. (3.9)

Since the second term in the denominator of (3.9) is non-negative for any es, the
argmin must satisfy P T

? AS = 0. Hence,

µ?
X
= max

es 6=0

〈

STXSes, es
〉

〈STASes, es〉
=

1

λmin((STXS)−1(STAS))
.

Theorem 3.1 is used to motivate the main result in Section 4. It will also be
used to prove many of the results in Sections 4 and 5. An interesting corollary to the
theorem is the following.

Corollary 3.2. The optimal P? in Theorem 3.1 is given by the formula:

P? =
[

S RT
]

[

−(STAS)−1(START )
I

]

= (I − S(STAS)−1STA)RT . (3.10)

Proof. This is obtained by solving the equation STAP? = 0. For any v consider
w = P?vc and use its decomposition w = Sws + RTwc. We have, vc = RP∗vc =
Rw = RRTwc = wc. On the other hand, since STAw = 0 one arrives at

STASws + STARTwc = 0.

That is, ws = −(STAS)−1STARTwc = −(STAS)−1STARTvc. Thus

P?vc =
(

−S(STAS)−1STA+ I
)

RTvc,

which completes the proof.
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Remark 3.1. The first expression in (3.10) can be viewed as a generalization of
the optimal interpolation for the AMGe measure (see Corollary 3.3 below). Alterna-
tively, the second expression in (3.10) can be viewed as a kind of smoothed aggregation
method. That is, the operator RT is a type of tentative prolongator, and the term
(I − S(STAS)−1STA) is a type of smoother (because it removes error components
in the “smoother space” spanned by S). The interpolation operator in the smoothed
aggregation method is formed similarly by smoothing a tentative prolongation oper-
ator, except that a simpler, local smoother is used. Another similarity is that the
smoothed aggregation smoother is designed to leave unchanged the kernel components
in range(RT ) (those kernel components that are representable on the coarse grid). In
(3.10), the fact that range(S) is A-orthogonal to range(P?) also insures this.

The following two corollaries specialize the results in Theorem 3.1 and Corollary
3.2 to the particular cases of AMGe and spectral AMGe. These results are useful
primarily because of the insight and guidance they provide for developing algorithms
in these settings.

Corollary 3.3. Assume that P and R are as in AMGe and have the specific
forms

P =

[

W
I

]

, R =
[

0 I
]

, (3.11)

where we have reordered the equations so that

A =

[

Aff Afc

Acf Acc

]

. (3.12)

Let X = ‖A‖I in (3.1). Then, the argmin and minimum of (3.2) are given by

P? =

[

−A−1ffAfc

I

]

, µ?
X
=

‖A‖
λmin(Aff )

. (3.13)

Proof. Let S = [ I 0 ]
T
. Then RS = 0 and STAS = Aff . The result then

follows trivially from (3.10) and (3.4).

Corollary 3.4. Assume that R has the form

RT = [p1, ...,pc], (3.14)

where the pi, 1 ≤ i ≤ n, are the orthonormal eigenvectors of A with corresponding
eigenvalues λ1 ≤ · · · ≤ λc ≤ · · · ≤ λn. Let X = ‖A‖ I in (3.1). Then, the argmin
and minimum of (3.2) are given by

P? = RT , µ?
X
=
‖A‖
λc+1

=
λn
λc+1

. (3.15)

Proof. Let S = [pc+1, ...,pn]. Then RS = 0 and STAS = diag(λc+1, ..., λn). The
result then follows trivially from (3.10) and (3.4).

Now, consider tailoring the base min-max problem (3.2) to the case of the new
measures in (2.5) and (2.11). Assume again that Q has the form Q = PR for some
fixed restriction operator R : Rn → Rnc such that RP = Ic. As before, define
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S : Rns → Rn such that RS = 0, and assume we are given a coarse grid Ωc. Define,
based on (2.11) and (2.11),

µ? := min
P

max
e6=0

µ(PR, e) (3.16)

µ?σ := min
P

max
e6=0

µσ(PR, e). (3.17)

The quantities µ? and µ?σ measure the ability of the coarse grid to represent alge-
braically smooth error, where algebraically smooth error is defined to be error com-
ponents that are not being effectively damped by the more general relaxation process
in (2.2). Strictly speaking, this interpretation of µ? and µ?σ assumes that the interpo-
lation operator is the optimal one; i.e., that P = P?. Hence, given a coarse grid, small
quantities indicate that there exists some interpolation operator that can interpolate
smooth error. Whether or not there exists a practical (e.g., local) interpolation oper-
ator is not addressed in this paper. However, empirical evidence so far indicates that
µ? and µ?σ are useful measures in practice, particularly for PDE problems.

4. Building Interpolation. In the previous section, we defined the quantities
µ? and µ?σ as indicators of the ability of the coarse grid to represent smooth error. As-
suming that either of these quantities is “small” (we will present an efficient approach
for estimating µ? and µ?σ in the next section), we then need to build an interpolation
operator. In practice, this means that we must somehow localize the new measure.
However, note that the result (3.3) in Theorem 3.1 does not depend on the X in (3.1).
This suggests the possibility that, once an adequate coarse grid has been chosen, the
procedure for building an interpolation operator can be done without knowledge of
the relaxation process. This is quantified in the next lemma and theorem.

Lemma 4.1. The following statements are equivalent, where Q = PR, P , R and
S are as before, and where η ≥ 1 is some constant:

〈AQe, Qe〉 ≤ η 〈Ae, e〉 , for all e; (4.1)

〈A(I −Q)e, (I −Q)e〉 ≤ η 〈Ae, e〉 , for all e; (4.2)

〈APec, Ses〉2 ≤ (1− 1

η
) 〈APec, Pec〉 〈ASes, Ses〉 , for all ec, es. (4.3)

Proof. We first show that the approximate harmonic property of P (4.1) implies
the strengthened Cauchy-Schwarz inequality (4.3). Letting e = tSes + Pec for any
ec, es and any real t, and noting that Qe = Pec, then (4.1) leads to the following
quadratic inequality for t,

t2 〈ASes, Ses〉+ 2t 〈APec, Ses〉+ (1− 1

η
) 〈APec, Pec〉 ≥ 0.

This implies that the discriminant of the above quadratic form is non-positive, which
is exactly the strengthened Cauchy-Schwarz inequality (4.3). In the same way, we can
also show that (4.2) implies (4.3) by noting that (I −Q)e = tSes.

To show that the strengthened Cauchy-Schwarz inequality (4.3) implies the ap-
proximate harmonic property (4.1), let e = Ses+RTec and note that R(I−Q)e = 0.
Therefore, there is a ês such that (I −Q)e = Sês. That is, e = Sês + Pec, and one
has

〈Ae, e〉 = 〈ASês, Sês〉+ 2 〈ASês, Pec〉+ 〈APec, Pec〉 .
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Using (4.3) implies

〈Ae, e〉 ≥ 〈ASês, Sês〉 − 2

√

1− 1

η
〈ASês, Sês〉1/2 〈APec, Pec〉1/2 + 〈APec, Pec〉

=
1

η
〈APec, Pec〉+

[

〈ASês, Sês〉1/2 −
√

1− 1

η
〈APec, Pec〉1/2

]2

≥ 1

η
〈AQe, Qe〉 .

In the same way, we can also show that (4.3) implies (4.2).
Theorem 4.2. Define µ

X
and µ?

X
as in (3.1) and (3.2), for any SPD matrix X.

Assume that a coarse grid has been chosen, and that an interpolation operator P has
been defined, such that the following conditions hold:

C1: µ?
X
≤ K, for some constant K;

C2: (4.1), (4.2), or (4.3) holds for some constant η ≥ 1.
Then, the following weak approximation property holds,

µ
X
(Q, e) ≤ ηK ∀e ∈ Rn \ {0}. (4.4)

Proof. From Lemma 4.1, we can assume the strengthened Cauchy-Schwarz in-
equality (4.3). Now, consider the left-hand side of the desired inequality (4.4) and
decompose e = Ses + RT ec. Note that R(I − Q)e = 0, which implies there is a ês
such that (I −Q)e = Sês. Hence, using (4.3) and Theorem 3.1, we have

max
e

µ
X
(Q, e) = max

ês

max
ec

〈XSês, Sês〉
〈A(Sês + Pec), (Sês + Pec)〉

= max
ês

max
ec

max
t∈R

〈XSês, Sês〉
〈A(Sês + tPec), (Sês + tPec)〉

= max
ês

max
ec

〈XSês, Sês〉
mint∈R 〈A(Sês + tPec), (Sês + tPec)〉

≤ max
ês

max
ec

〈XSês, Sês〉
〈ASês, Sês〉 − 〈APec, Sês〉2

〈APec, Pec〉

≤ max
ês

max
ec

〈XSês, Sês〉
〈ASês, Sês〉 − (1− 1

η ) 〈ASês, Sês〉

= ηmax
ês

〈XSês, Sês〉
〈ASês, Sês〉

= ηµ?
X

≤ ηK.

The corollaries to Theorem 4.2 for measures µ and µσ separate coarse-grid correc-
tion into two distinct parts: C1 insures the quality of the coarse grid, i.e., its ability to
represent algebraically smooth error components; and C2 insures that these smooth
components are adequately interpolated. Hence, once an adequate coarse grid is cho-
sen, it is sufficient to build interpolation based on any one of the three statements in
C2. In fact, the following result holds.
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Corollary 4.3. The statements in C2 are necessary conditions for obtaining a
uniformly convergent method.

Proof. To see this in the case of measure µσ, note that our assumption that
(M+MT −A) is SPD implies that 2 〈σ(M)e, e〉 ≥ 〈Ae, e〉. Hence, an approximation
property that bounds measure µσ (with constant Kσ) also implies (4.2) (with η =
2Kσ).

The significance of the above result is that the statements in C2 nowhere involve
the relaxation process. This implies that we can construct interpolation coefficients
(again, assuming a coarse grid has already been chosen) using previously developed
methods, even those methods that assumed a pointwise smoother. For example, in
AMGe, a local procedure is used for constructing interpolation that produces an
approximation property of the form

‖A‖ ‖(I −Q)e‖2 ≤ η 〈Ae, e〉 . (4.5)

But, it is obvious that this also implies (4.2), which in turn implies the more general
result in Theorem 4.2. Note that, even if the constant η is sharp in (4.5), this may
be an extremely pessimistic constant for (4.2). See Section 6.1 for an example.

5. Compatible Relaxation. In this section, we introduce the idea of compatible
relaxation and show how its convergence rate may be used to estimate the quantities
µ? and µ?σ in (3.16) and (3.17). That is, we will show how compatible relaxation may
be used to insure C1 of Theorem 4.2. We will present four variants of compatible
relaxation, each having its own advantages and disadvantages, and suggest a simple
algorithm for using these techniques to choose coarse grids in algebraic multigrid
methods.

Compatible relaxation, as defined by Brandt [5], is a modified relaxation scheme
that keeps the coarse-level variables invariant. Consider the following compatible
relaxation iteration (represented here by its corresponding error propagation)

ek+1 = (I − S(STMS)−1STA)ek, (5.1)

where S : Rns → Rn is defined, as before, in terms of some restriction operator R.
Recall that the coarse-grid variables are defined by uc = Ru. Since RS = 0, we see
from (5.1) that Rek+1 = Rek; that is, the coarse-grid variables are invariant under this
iteration. Hence, we need only consider compatible relaxation in the complementary
space (in the L-2 sense) via the following iteration:

ek+1 = (I − (STMS)−1(STAS))ek. (5.2)

Brandt states that a general measure for the quality of the set of coarse variables is
the convergence rate of compatible relaxation. In the next theorem, we will make this
statement rigorous by relating the convergence of the compatible relaxation process
in (5.2) to the measure µ? in (3.16) (equivalently, µ?σ in (3.17)).

Theorem 5.1. Assume that (M +MT −A) is SPD. Then,

µ? ≤ ∆2

2− ω
· 1

1− ρs
, (5.3)

where constants ∆ and ω are as in Lemma 2.3, and where

ρs =
∥

∥(I −M−1
s As)

∥

∥

As
, (5.4)
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with Ms = (STMS) and As = (STAS). Note that, although we use ρ to represent
the spectral radius of a matrix, the quantity ρs is in general only an upper bound for
the spectral radius of compatible relaxation; it is equal to the spectral radius when M
is symmetric.

Proof. From (3.16), (3.17), and Lemma 2.3, we have that

µ? ≤ ∆2

2− ω
µ?σ.

But, from (2.11) and Theorem 3.1,

µ?σ =
1

λmin(σ(Ms)−1As)

= max
vs

〈Msvs, vs〉
〈Asvs, vs〉

≤
∥

∥

∥
A−1/2s MsA

−1/2
s

∥

∥

∥
.

Hence, we have

µ? ≤ ∆2

2− ω

∥

∥

∥
A−1/2s MsA

−1/2
s

∥

∥

∥
,

and it remains to show that
∥

∥

∥
A−1/2s MsA

−1/2
s

∥

∥

∥
≤ (1− ρs)

−1. (5.5)

Consider the following symmetric compatible relaxation matrix,

Hss = (I −M−1
s As)(I −M−T

s As).

We have that

ρ(Hss) = ρ(A1/2
s HssA

−1/2
s )

= ρ((I −A1/2
s M−1

s A1/2
s )T (I −A1/2

s M−1
s A1/2

s ))

=
∥

∥

∥
(I −A1/2

s M−1
s A1/2

s )
∥

∥

∥

2

=
∥

∥(I −M−1
s As)

∥

∥

2

As

= ρ2s.

Noting that Hss can also be written as I −M−1
ss As, where

M−1
ss = (M−1

s +M−T
s −M−1

s AsM
−T
s ),

we have that,

ρ2s = ρ(Hss) = max
λ
|1− λ(M−1

ss As)| ≥ 1− λmin(M
−1
ss As).

Letting Y −1s = A
1/2
s M−1

s A
1/2
s , one arrives at the coercivity estimate,

(1− ρ2s) 〈vs, vs〉 ≤
〈

M−1
ss A

1/2
s vs, A

1/2
s vs

〉

=
〈

(Y −T
s + Y −1s − Y −1s Y −T

s )vs, vs
〉

= 2
〈

Y −T
s vs, vs

〉

−
〈

Y −T
s vs, Y

−T
s vs

〉

. (5.6)
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Using the Cauchy–Schwarz inequality,

〈

Y −T
s vs, vs

〉

≤ 〈vs, vs〉1/2
〈

Y −T
s vs, Y

−T
s vs

〉1/2
,

in (5.6), we arrive at

(

〈vs, vs〉1/2 −
〈

Y −T
s vs, Y

−T
s vs

〉1/2
)2

≤ ρ2s 〈vs, vs〉 .

That is,

(1− ρs)
2 〈vs, vs〉 ≤

〈

Y −T
s vs, Y

−T
s vs

〉

.

Adding the left- and right-hand sides of the last estimate and estimate (5.6), one gets,

(1− ρs) 〈vs, vs〉 ≤
〈

Y −T
s vs, vs

〉

.

This implies, letting vs := Ysvs, that

‖Ysvs‖2 = 〈Ysvs, Ysvs〉
≤ (1− ρs)

−1 〈vs, Ysvs〉
≤ (1− ρs)

−1 ‖Ysvs‖ ‖vs‖ .
Therefore, ‖Ysvs‖ ≤ (1− ρs)

−1 ‖vs‖, which implies (5.5), and hence, the result.
Theorem 5.1 shows that if compatible relaxation is fast to converge (i.e., ρs is

small), then µ? is small (similarly for µ?σ). To use this result in practice as a means of
measuring the quality of a given coarse grid, we must be able to efficiently estimate
the value of ρs in (5.4). One obvious approach for doing this is to run the compatible
relaxation iteration in (5.2) and monitor its convergence. In some cases, this may
not be feasible. However, in the case where M is derived from a matrix splitting,
A = M − N , such that M is explicitly available, the iteration in (5.2) is at least
computable.

5.1. Compatible Relaxation via Subspace Correction. Another practical
form of compatible relaxation is based on the general subspace correction method
framework [23], which encompasses both additive and multiplicative Schwarz. Of
particular interest is the question of how to define a compatible relaxation variant of
overlapping Schwarz. The iteration in (5.2) does not readily admit how to achieve
this. In fact, the question of how to define compatible relaxation variants of general
subspace correction methods requires some care.

Consider the following additive method

I −M−1A; M−1 =
∑

i

Ii(I
T
i AIi)

−1ITi , (5.7)

where Ii : Rni → Rn has full rank, ni < n, and Rn =
⋃

i range(Ii). Define full rank
normalized operators Si and R

T
i such that

range(Si) = range(ITi S), (5.8)

range(RT
i ) = range(ITi R

T ). (5.9)

In order to define a usable additive version of compatible relaxation, the Ii must be
chosen so that the local spaces Si and R

T
i are orthogonal, i.e., RiSi = 0. Compatible

relaxation is then defined as follows:

I −M−1
cr As; M−1

cr =
∑

i

ST Is,i(I
T
s,iAIs,i)

−1ITs,iS; Is,i = IiSi. (5.10)
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One natural relaxation method that is represented by (5.10) is additive Schwarz. We
will discuss this method in more detail below. First, we prove the following lemma
and theorem.

Lemma 5.2. Assume that we are given the decomposition,

v = Svs +RTvc =
[

S RT
]

[

vs
vc

]

,

such that RS = 0 and STS = I. For any matrix, M , we have that

(STM−1S)−1 =MSchur := STMS − STMRT (RMRT )−1RMS.

If M is SPD, then the following also holds:

〈

(STM−1S)−1vs, vs
〉

= min
vc

〈

M(Svs +RTvc), (Svs +RTvc)
〉

.

Proof. Define the HB matrix

M :=
[

S RT
]T
M
[

S RT
]

=

[

Mss Msc

M cs M cc

]

. (5.11)

One has, STMS =Mss by definition. Again, from the definition of M ,

[

S RT
]

M
−1 [

S RT
]T

=M−1.

Hence,

STM−1S = ST
[

S RT
]

M
−1 [

S RT
]T
S.

Now, using the fact that RS = 0 and STS = I, one gets,

STM−1S = [ I 0 ]M
−1

[ I 0 ]
T
.

Finally, since

M
−1

=

[

(

MSchur

)−1
?

? ?

]

,

one gets,

STM−1S = [ I 0 ]M
−1

[ I 0 ]
T
=
(

MSchur

)−1
,

which implies the first result. The second result follows trivially by noting that

min
vc

〈

M(Svs +RTvc), (Svs +RTvc)
〉

is a quadratic form in the variable vc. The minimum is
〈

MSchurvs, vs
〉

.
Theorem 5.3. Let M−1 and M−1

cr be as in (5.7) and (5.10), respectively. Define
ω as in Theorem 5.1, and define

ρcr =
∥

∥(I −M−1
cr As)

∥

∥

As
= ρ(I −M−1

cr As). (5.12)
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Then,

µ? ≤ 1

2− ω
· 1

1− ρcr
. (5.13)

Proof. As before, we can write any vector e as e = Ses +RTec, for some es and
ec. From (5.8)/(5.9), there exist vectors es,i and ec,i such that Sies,i = ITi Ses and
RT

i ec,i = ITi R
Tec. Using this, together with the result in Lemma 5.2 (replacing M−1

by (ITi AIi), and R and S by Ri and Si, respectively), we have

〈

M−1
cr es, es

〉

=
∑

i

〈

(ST
i I

T
i AIiSi)

−1ST
i I

T
i Ses, S

T
i I

T
i Ses

〉

=
∑

i

〈

(ST
i I

T
i AIiSi)

−1es,i, es,i
〉

≤
∑

i

〈

(ITi AIi)
−1 [ Si RT

i

]

[

es,i
ec,i

]

,
[

Si RT
i

]

[

es,i
ec,i

]〉

=
∑

i

〈

(ITi AIi)
−1ITi

[

S RT
]

[

es
ec

]

, ITi
[

S RT
]

[

es
ec

]〉

=
∑

i

〈

Ii(I
T
i AIi)

−1ITi e, e
〉

=
〈

M−1e, e
〉

.

Since ec was arbitrary, this implies (again, using Lemma 5.2) that

〈

M−1
cr es, es

〉

≤ min
ec

〈

M−1e, e
〉

=
〈

(STMS)−1es, es
〉

=
〈

M−1
s es, es

〉

.

Hence, from (3.16), (3.17), and Lemma 2.3, we have that

µ? ≤ (2− ω)−1 µ?σ

= (2− ω)−1
1

λmin(M
−1
s As)

≤ (2− ω)−1
1

λmin(M
−1
cr As)

≤ (2− ω)−1 (1− ρcr)
−1.

When the coarse-grid variables are a subset of the fine-grid variables, then we
have that R = [ 0 I ] and S = [ I 0 ]

T
, and the additive Schwarz method satisfies

the criteria for the compatible relaxation in (5.10). To see this, note that, for additive
Schwarz, each Ii is a characteristic function over some local subdomain, Ωi. That
is, Iiw = wi on Ωi and zero outside of Ωi. From the construction of Si and RT

i in
(5.8) and (5.9), it is clear that they are also just characteristic functions: RT

i over the
C-pts in Ωi; and Si over the F -pts in Ωi. Hence, RiSi = 0 for all i.

Multiplicative versions of compatible relaxation are also possible but more dif-
ficult to construct, and may not be necessary anyway. Standard Gauss-Seidel and
block Gauss-Seidel methods have straightforward compatible relaxation variants, but
a general form for multiplicative subspace correction or multiplicative Schwarz (with
overlap) is not apparent.
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Multiplicative methods are not as practical in the parallel setting, but have better
smoothing properties in the sense that ω is usually bounded away from 2 for mul-
tiplicative methods without the need for additional smoothing factors. In practice,
a good smoother to use is the natural generalization of F -C relaxation. That is,
(post) smoothing should consist of the above additive compatible relaxation process,
followed by the analogous additive compatible relaxation process on the RT space.
Since STAS and RART are well-conditioned in some sense, the additive compatible
relaxation methods should work well.

5.2. A More General Form of Compatible Relaxation. Although the com-
patible relaxation methods presented so far provide for many of the traditional relax-
ation methods, there are still some that may not be represented. In particular, the
iteration in (5.2) requires that the matrix M is available and that the matrix STMS
is easily inverted. This may not always be feasible. Additive Schwarz is one such
example, albeit one that fortunately has a remedy as described in (5.10). In general,
the action of M−1 is always available, and motivates us to consider the following
compatible relaxation process,

ek+1 = (I − (STM−1S)(STAS))ek, (5.14)

where, here, S must be normalized so that STS = Is, the identity on Rns . This
method is always computable, but must be used with care, as we describe below.
First, we state the following result.

Theorem 5.4. Assume that the smoother (SPD) M is stable with respect the
decomposition v = Svs + RTvc, in the sense that for some constant γ ∈ [0, 1) the
following strengthened Cauchy-Schwarz inequality holds:

〈

MSvs, R
Tvc

〉

≤ γ 〈MSvs, Svs〉1/2
〈

MRTvc, R
Tvc

〉1/2
, for all vs,vc. (5.15)

Then, the following estimates hold for all vs,

〈

(STMS)−1vs, vs
〉

≤
〈

STM−1Svs, vs
〉

≤ 1

1− γ2
〈

(STMS)−1vs, vs
〉

.

In other words the modified compatible relaxation matrix, (STM−1S), is spectrally
equivalent to the true one, (STMS)−1.

Proof. Define M as in (5.11) in the proof of Lemma 5.2. From the lemma, one
trivially has

〈

(STM−1S)−1vs, vs
〉

=
〈

MSchurvs, vs
〉

≤
〈

STMSvs, vs
〉

.

Replacing M by M−1 yields the first inequality. The second inequality follows from
the corollary to the strengthened Schwarz inequality,

〈

Mssvs, vs
〉

≤ 1

1− γ2
min
vc

〈

M

[

vs
vc

]

,

[

vs
vc

]〉

=
1

1− γ2
〈

MSchurvs, vs
〉

.

Here again, replace M by M−1 to get the result.
The above theorem implies the following about the eigenvalues of the correspond-

ing iteration matrix (5.14) and the original compatible relaxation matrix in (5.2):

λ
(

I − (STM−1S)As

)

≤ λ
(

I − (STMS)−1As

)

≤ γ2 + (1− γ2)λ
(

I − (STM−1S)As

)

.
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Hence, if ρg is the spectral radius of
(

I − (STM−1S)As

)

, we arrive at the following
result, analogous to the results of Theorem 5.1 and Theorem 5.3:

µ? ≤ 1

2− ω
· 1

1− γ2
· 1

1− ρg
. (5.16)

From this, we see that in order to use the compatible relaxation method in (5.14), we
must first have an estimate for the size of γ.

In practice, γ can often be estimated locally. This is the case, for example, when
M is assembled from small matrices. That is, let 〈Mv, v〉 =

∑

e 〈Meve, ve〉 =
∑

e

〈

Me(Ie)
Tv, (Ie)

Tv
〉

. Here, v|e = ve. Similarly, for a given ve on e, Ieve is
the extension of ve as zero outside e. Let also (Ie)

TS = Se(Is,e)
T , and (Ie)

TR =
Re(Ic, e)

T , for Se, Is, e, and Re and Ic, e supported in e. Then,

〈

STMSvs, vs
〉

=
∑

e

〈

(Se)
TMeSevs, e, vs, e

〉

.

If one can say something about the local matrices (Se)
TMeSe and the local Schur

complement M e, Schur of Me =
[

Se RT
e

]T
Me

[

Se RT
e

]

, the maximum of all local
γe’s gives an upper bound for the global γ. This technique is well-known in the
two-level HB literature, cf., e.g., R. Bank [2].

A similar approach can be used to estimate γ in the case where M−1 is obtained
by assembling local matrices. As an example, for additive Schwarz, we have that

M−1 =
∑

i

Ii(I
T
i AIi)

−1ITi ,

where, as described near the end of the previous section, Ii is the characteristic func-
tion over some local subdomain, Ωi. If we have a local estimate of the form

〈

ST
i (I

T
i AIi)

−1Sies,i, es,i
〉

≤ 1

1− γ2i

〈

(ST
i I

T
i AIiSi)

−1es,i, es,i
〉

,

then, using the proof of Theorem 5.13 for the last inequality below, we can show that

〈

M−1Ses, Ses
〉

=
∑

i

〈

Ii(I
T
i AIi)

−1ITi Ses, Ses
〉

=
∑

i

〈

ST
i (I

T
i AIi)

−1Sies,i, es,i
〉

≤ 1

1−maxi γ2i

∑

i

〈

(ST
i I

T
i AIiSi)

−1es,i, es,i
〉

≤ 1

1−maxi γ2i

〈

(STMS)−1es, es
〉

.

The compatible relaxation method in (5.14) is similar to the habituated compat-
ible relaxation scheme in [17]. The latter has the error propagation

ek+1 = (I − STM−1AS)ek. (5.17)

The theoretical result is similar to (5.16). We have the following theorem.
Theorem 5.5. Assume that the smoother (SPD) M is stable with respect the

decomposition v = Svs + RTvc, in the sense that for some constant γ ∈ [0, 1) the
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strengthened Cauchy-Schwarz inequality in (5.15) holds. Assume that for some con-
stant ρh < 1 the following convergence estimate holds,

〈Asek+1, ek+1〉 ≤ ρ2h 〈Asek, ek〉 .

Then, the following coercivity estimate holds

δ 〈Mges, es〉 ≤ 〈Ases, es〉 ,

where Mg = (STM−1S)−1 and δ ≥ 1
2
(1− ρh)2. The latter coercivity estimate implies

convergence of the compatible relaxation method in (5.14) with convergence factor
ρg = 1− δ).

Proof. Given es, consider the solution x of the problem,

Mx = ASes.

The following inequality then follows

〈Mx, x〉 =
〈

M−1/2ASes, M
1/2x

〉

≤
〈

M−1ASes, ASes
〉1/2 〈Mx, x〉1/2 .

This implies that 〈Mx, x〉 ≤
〈

M−1ASes, ASes
〉

, which from Lemma 5.2 and the
fact that 2M −A is SPD, leads to

〈Mgxs, xs〉 = min
xc

〈

M(Sxs +RTxc), (Sxs +RTxc)
〉

≤ 〈Mx, x〉 ≤
〈

M−1ASes, ASes
〉

≤ 2 〈Ases, es〉 . (5.18)

Now, using Cauchy Schwarz and the fact that the habituated compatible relaxation
is convergent, one has,

〈Mges, es − xs〉 =
〈

A−1/2s Mges, A
1/2
s (I − STM−1AS)es

〉

≤ ρh
〈

A−1s Mges, Mges
〉1/2 〈Ases, es〉1/2

This inequality, using Cauchy-Schwarz and estimate (5.18), implies

〈Mges, es〉 ≤ 〈xs, Mges〉+ ρh
〈

A−1s Mges, Mges
〉1/2 〈Ases, es〉1/2

≤
√
2 〈Ases, es〉1/2 〈Mges, es〉1/2

+ρh
〈

A−1s Mges, Mges
〉1/2 〈Ases, es〉1/2 .

Dividing through by 〈Ases, es〉1/2 〈Mges, es〉1/2 one ends up with the inequality,

√

〈Mges, es〉
〈Ases, es〉

≤
√
2 + ρh

√

〈

A−1s Mges, Mges
〉

〈Mges, es〉
.

Now let,

1

δ
= sup

es

〈Mges, es〉
〈Ases, es〉

= sup
es

〈

A−1s es, es
〉

〈

M−1
g es, es

〉 .



19

Then, the following inequality is obtained,

1√
δ
≤
√
2 + ρh

1√
δ
.

That is,

1

δ
≤ 2

(1− ρh)2
.

From the theorem and (5.16), we have the following result for habituated com-
patible relaxation

µ? ≤ 1

2− ω
· 1

1− γ2
· 2

(1− ρh)2
. (5.19)

This result is weaker than the previous results for the other compatible relaxation
methods. However, as with the method in (5.14), habituated compatible relaxation
is always computable. In fact, it is the easiest to implement in practice because it
directly involves the global smoother, I −M−1A. To see this, note that since S is
normalized, the ST and S in (5.17) can be pulled outside of the parenthesis.

5.3. A Coarsening Algorithm. The above results suggest that compatible
relaxation may serve as a useful tool for selecting coarse grids in algebraic multigrid
methods. We now present an outline for such a coarsening algorithm in the case
where the coarse grid is a subset of the fine grid. That is, consider the case where
R = [ 0 I ] and S = [ I 0 ]

T
. In the coarsening algorithm, one may apply any of the

compatible relaxation methods above, i.e., either (5.2), (5.10), (5.14), or (5.17) to the
homogeneous equations

(STAS)x = 0, (5.20)

with some initial guess, say x0 = (x0i ), where x
0
i = 1 or random positive numbers.

Initialize U = Ω; C = ∅; F = Ω \ C (5.21a)

While U 6= ∅ (5.21b)

Do ν compatible relaxation sweeps (5.21c)

U = {i : (|xνi |/|xν−1i |) > θ} (5.21d)

C = C ∪ {independent set of U}; F = Ω \ C (5.21e)

This algorithm is similar to what Livne [17] and Brandt [5] use. Note: Instead of
adding C-pts, one can also change relaxation.

6. Examples. In this section, we present two examples illustrating the theoret-
ical results of the paper. The first example is a simple anisotropic diffusion problem
that demonstrates the ability of the theory (and compatible relaxation) to account
for a more general relaxation process; in this case, line relaxation. The example also
demonstrates the use of previously developed methods (here, AMGe) for defining ad-
equate interpolation operators in the sense of satisfying C2 in Theorem 4.2. The
second example illustrates how a non-trivial geometric multigrid method for H(div)
fits into the new framework.
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Fig. 6.1. Uniform grid with triangular elements and standard coarse grid.

6.1. Compatible Line Relaxation for Anisotropic Diffusion. Consider the
grid-aligned anisotropic problem

−εuxx − uyy = f, (x, y) ∈ Ω = (0, 1)2,

with Dirichlet boundary conditions, discretized on a uniform rectangular grid with
mesh-size hx = hy = h = 2−` as in Figure 6.1. Using piecewise linear elements on
triangles, the resulting macro-element matrix for each rectangle is given by,

Ae = ε









1 −1 0 0
−1 1 0 0
0 0 1 −1
0 0 −1 1









+









1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1









.

The vertices (nodes) of every rectangle are assumed to have the ordering: (xi, yj),
(xi+1, yj), (xi, yj+1), (xi+1, yj+1); where, xi = ihx, yj = jhy, i, j = 0, 1, . . . , 2`.

Consider a block smoother, where the blocks are given by vertical lines of nodes
in the grid. That is, consider a line smoother, where the lines are in the “strong”
vertical direction. We note that M can be assembled from the same element matrices
as A by zeroing some couplings in Ae (namely the ones in the x-direction), yielding

Me = ε









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









+









1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1









.

Assume standard coarsening, so that S = [ I 0 ]
T
, where the zero block corresponds

to the coarse nodes. We now analyze the convergence rate of the compatible relaxation
process in (5.2). Note that STMS and STAS can also be assembled from local ma-
trices Ms, e and As, e; namely, those obtained from the above matrices in which a row
and a column are deleted corresponding to the only coarse node in each rectangular
element. Due to symmetry, we delete the last row and last column to get

As, e = ε





1 −1 0
−1 1 0
0 0 1



+





1 0 −1
0 1 0
−1 0 1



 (6.1)

and

Ms, e = ε





1 0 0
0 1 0
0 0 1



+





1 0 −1
0 1 0
−1 0 1



 .
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It is sufficient to compute the eigenvalues of the generalized eigenvalue problem,

As, ex = λ Ms, ex.

This leads to the following cubic equation for λ,
∣

∣

∣

∣

∣

∣

(1− λ)(1 + ε) −ε −(1− λ)
−ε (1− λ)(1 + ε) 0

−(1− λ) 0 (1− λ)(1 + ε)

∣

∣

∣

∣

∣

∣

= 0.

The roots are,

λ = 1, 1±
√

ε

2 + ε
.

Hence, the spectrum of the compatible relaxation iteration matrix, (I −M−1
s As), is

contained in the interval
[

−
√

ε

2 + ε
,

√

ε

2 + ε

]

.

For ε ∈ (0, 1], this implies that ρs ≤ 1/
√
3. It is well known that linear interpolation

is bounded in energy, i.e., it satisfies (4.1) for some constant η independent of ε. In
fact, for rightangled triangles, one has η = 1

1−γ2 with γ2 = 1
2
, cf. [18]. Hence, from

Theorem 4.2 and 2.2, we can conclude that the two-grid method with the above line
smoother converges with a rate bounded independent of ε (also a well-known fact).

Now, consider the AMGe measure η in (4.5). We know from Corollary 3.3 that

η ≥ ‖A‖ 1

λmin(Aff )
(6.2)

for any interpolation operator, P . Again, because of symmetry, we can bound the
minimum eigenvalue of Aff by considering the eigenvalues of the local stiffness matrix
with the first and last rows deleted. That is, we can look at the eigenvalues of As, e

in (6.1), which satisfy the following cubic equation for λ,
∣

∣

∣

∣

∣

∣

(1 + ε− λ) −ε −1
−ε (1 + ε− λ) 0
−1 0 (1 + ε− λ)

∣

∣

∣

∣

∣

∣

= 0.

The roots are

λ = (1 + ε), (1 + ε)±
√

1 + ε2. (6.3)

Hence,

λmin(Aff ) = (1 + ε)−
√

1 + ε2 ≤ ε, (6.4)

which implies that

η ≥ ‖A‖ 1
ε

(6.5)

for any interpolation operator, P . But, as mentioned earlier in this example, linear
interpolation satisfies (4.1) for a constant η independent of ε. Hence, although the
AMGe measure η in (4.5) also implies (4.1), it is clearly a poor estimate for the latter.
Note, however, that we may still use (4.5) to construct good interpolation operators.
In particular, the AMGe method can produce linear interpolation for this example;
the method is just unable to judge the quality of this interpolation operator when the
smoother is line relaxation.
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Fig. 6.2. Coarse rectangle and its refinement. The DOFs of the respective Raviart-Thomas
elements are associated with the midpoints of the edges of the elements.

6.2. Geometric two-grid method for H(div). The space H(div) is spanned
by vector-functions χ in (L2(Ω))

d (d = 2 in the present example) whose divergence is
also in L2(Ω). Consider the Raviart-Thomas finite element discretization [13] of the
H(div) bilinear form,

(k−1χ, θ) + (∇ · χ, θ). (6.6)

Here, k = k(x) is a given positive coefficient and (·, ·) stands for the L2(Ω) inner
product. The 2D domain Ω is formed from rectangular fine grid elements of mesh
size h. The elements are obtained by successive steps of uniform refinement of an
initial rectangular coarse mesh. The Raviart-Thomas finite element space of lowest
order is spanned locally on every fine-grid rectangle by vector polynomials of the form

[

ax+ b
cy + d

]

. (6.7)

It is clear that by specifying χ ·n on every edge of the rectangles, then every rectangle
has four degrees of freedom, and hence the four coefficients a, b, c, and d are uniquely
determined. One also notices that χ · n on every edge is constant. Hence, χ · n is
continuous across every edge of the fine-grid elements and the vector-function χ is
globally in H(div).

Consider now two triangulations: fine-grid rectangles of mesh size h and coarse-
grid rectangles of mesh size H = 2h. The degrees of freedom are shown in Fig. 6.2. A
standard “Lagrangian” basis of Vh is constructed by choosing, for every fine-grid edge,
a function φ which has normal component equal to 1 and zero normal components
at the remaining edges. Let T be a coarse rectangle formed by four fine-grid ones.
The degrees of freedom (DOFs) of a fine-grid vector v (w.r.t. the chosen Lagrangian
basis) restricted to T can be partitioned into two groups: interior (to T ) DOFs and
boundary DOFs. The boundary DOFs on every edge of T are given by

[

v · n1
v · n2

]

} first fine-grid edge
} second fine-grid edge

,

and can be decomposed as follows
[

v · n1
v · n2

]

=
1

2

[

v · n1 − v · n2
v · n2 − v · n1

]

+
1

2

[

v · n1 + v · n2
v · n1 + v · n2

]

.

Introduce now the operators acting on vectors spanned by the boundary DOFs:

RB =
1√
2
[ I I ] , and SB =

1√
2
[ I − I ]

T
. (6.8)
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Next, partition the stiffness matrix A into a 2×2 block form with blocks corresponding
to the interior and boundary DOFs. That is,

A =

[

AII AIB

ABI ABB

]

} interior fine-grid edges w.r.t. to coarse elements
} boundary fine-grid edges w.r.t. to coarse elements

·

Note that AII is block-diagonal with blocks of size 4× 4. Denote the reduced matrix
(obtained by “static condensation”) AB = ABB − ABI (AII)

−1
AIB . Note that AB

is sparse and explicitly available. For every coarse element edge, fix an ordering of
the underlying fine grid edges. This induces a natural partitioning of the boundary
DOFs into two groups, corresponding to the above block structure (6.8) of RB and
SB . Finally, introduce the global decomposition operators,

S =

[

I −A−1II AIBSB
0 SB

]

, (6.9)

and

R = [ 0 RB ] . (6.10)

Clearly, RS = 0 and RRT = RB(RB)
T = I.

We now choose the following smoother,

M =

[

AII 0
ABI diag(AB)

] [

I −A−1II AIB

0 I

]

=

[

AII AIB

ABI diag(AB) +ABIA
−1
II AIB

]

. (6.11)

Since M is in a factored form, it is straightforward to implement its inverse action;
it involves two actions of the block-diagonal matrix (AII)

−1 and one solve with the
scalar diagonal matrix diag(AB).

One can see that

STMS =

[

AII 0
0 ST

B diag(AB) SB

]

·

Similarly,

STAS =

[

AII 0
0 ST

BABSB

]

·

The compatible relaxation in (5.2) tells us to look at the matrix

(

STMS
)−1

(STAS) =

[

I 0

0
(

ST
B diag(AB) SB

)−1
ST
BABSB

]

·

Based on a result by Cai, Goldstein and Pasciak [10], one can show that ST
BABSB is

spectrally equivalent to a diagonal matrix. In particular, it is spectrally equivalent to
the matrix constIB , where const is piecewise constant w.r.t. the coarse element edges.
This verifies that the respective compatible relaxation gives rise to a well-conditioned

matrix
(

STMS
)−1

(STAS).
It remains to construct a bounded in energy (“approximate harmonic”) interpola-

tion operator P . We choose here the P which is naturally defined from the embedding
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VH ⊂ Vh. In operator form, P is the identity. However, in matrix form, its action is
computed as follows. Given vH , consider its four DOFs of the form vH ·n for the four
edges of every coarse element. These are four constants. Based on these DOFs, one
finds the polynomial representation of vH on every coarse element. It has the form
(6.7). That is, one determines the four constants a, b, c, and d. Then one computes
vH · n for all interior fine-grid edges. These, as mentioned above, are also constants
(four). Then on every fine grid edge we have specified the fine-grid DOFs v ·n which
are used in the computation.

To prove the energy boundedness of P we proceed as follows. Given v ∈ Vh. Com-
pute Rv. This takes into account only the DOFs which correspond to the boundary
(w.r.t. the coarse elements) fine-grid edges. Using function notation it means that we
have computed the coarse edge integrals

∫

F
v · n d% for every coarse edge F . Based

on the four values for every coarse element we construct the unique coarse vector
vH = P (Rv). It has the property that

∫

F
vH ·n d% =

√
2
∫

F
v ·n d%. In other words,

for any constant function w on a given coarse element T we get
∫

∂T

wvH · n d% =
√
2

∫

∂T

wv · n d%.

Using the fact that ∇w = 0 on T and the divergence theorem, we get
∫

T

w∇ · vH dx dy =
√
2

∫

T

w∇ · v dx dy.

If one introduces the element-wise L2 projection QH onto the space of piecewise
constant functions (w.r.t. the coarse elements) , the above identity shows that ∇ ·
(PRv) =

√
2 QH∇ · v. This immediately implies the inequality,

(∇ · (PRv), ∇ · (PRv)) = 2 (QH∇ · v, QH∇ · v) ≤ 2 (∇ · v, ∇ · v).

It remains to bound the L2-norm of (PRv),

(PRv, PRv) ≤ η (v, v),

for a mesh-independent constant η. We note that
∫

T

v · v dxdy ' h2
∑

f : edge of fine-grid element τ⊂T

(v · nf )
2.

Similarly,
∫

T

vH · vH dxdy ' H2
∑

F : edge of T

(vH · nF )
2.

Let F = f1 ∪ f2. Since vH · nF = 1√
2

(v · nf1
+ v · nf2

), hence (vH · nF )
2 =

1
2
(v · nf1

+ v · nf2
)
2 ≤ (v ·nf1

)2+(v ·nf2
)2. This shows that for a mesh-independent

constant η one gets
∫

T

vH · vH dxdy ≤ η

∫

T

v · v dxdy,

which after summation over all coarse elements leads to the required L2-boundedness
of PR. Thus, we get the desired result that PR is bounded in H(div)-norm.
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